

Unix Shell Programming

Chapter 4: Decisions

Roshan Chitrakar, PhD
roshanchi@gmail.com

if

● enables you to test a condition and then change the flow of program
execution.

if commandt

then

command

command

...

fi

● where commandt is executed and its exit status is tested. If the exit
status is zero, the commands that follow between the then and the fi are
executed; otherwise, they are skipped.

● if ,,, then ,,, else ,,,, fi construct can also be used.
● ….. elif…. clause is also supported.

Exit Status

● Whenever any program completes execution, it returns an exit
status back to the system.

● an exit status of zero indicates that a program succeeded, and
nonzero indicates that it failed.

● In a pipeline, the exit status is that of the last command in the pipe.
e.g. who | grep fred

● The $? Variable: set by the shell to the exit status of the last
command executed.

$ who | grep fred # fred does not exist

$ echo $? returns 1
● the next echo $? returns 0 (why?)

test

● used for testing one or more conditions
● Syntax : test expression

– $ test "$name" = julio # string operator

– $ test -n "$nullvar"# string is not null

– $ test -z "$nonnullvar" # zero length

● Alternative way of test
– test expression is equivalent to [expression]

– ["$count" -eq 0] # integer operator equality

– ["$choice" -lt 5] # less than

– ["$index" -ne "$max"]

● File operators may also be used in test
– [-f /users/steve/phonebook] # file exists or not

– [-r /users/steve/phonebook] # read only status

– [-d /users/home/roshanchi/xshellprg] # file is a directory

Logical Operators

● [! -r /users/steve/phonebook] # NOT
● [! "$x1" = "$x2"]
● ["$x1" != "$x2"]
● [-f "$mailfile" -a -r "$mailfile"] # AND
● ["$count" -ge 0 -a "$count" -lt 10]
● [-n "$mailopt" -o -r $HOME/mailfile] # OR

exit

● Syntax : exit n
● where n is the exit status that you want

returned. If none is specified, the exit status
used is that of the last command executed
before the exit.

case

● allows you to compare a
single value against other
values and to execute one or
more commands when a
match is found.

● The format is –->

case value in

pat 1)

command

...

command;;

...

pat n)

command

...

command;;

esac

The Null Command :

● : command does nothing
● it's only used to satisfy the requirement that a command appear
● Example: -

if grep "^$system" /users/steve/mail/systems > /dev/null

then

:

else

echo "$system is not a valid system"

exit 1

fi

&& and ||

● In case of &&, command2 will be executed only if
command1 returns an exit status of zero
– sort bigdata > /tmp/sortout && mv /tmp/sortout bigdata

● Opposingly in ||, the second command gets executed
only if the exit status of the first is nonzero.
– grep "$name" phonebook || echo "Couldn't find $name"

● They may well be combined: -
– who | grep "^$name " > /dev/null && echo "$name's not

logged on" || echo "$name is logged on"

● When used in an if, the effect of && and || are like
"AND” and “OR"

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

