Unix Shell Programming

Chapter 5: Looping

Roshan Chitrakar, PhD
roshanchi@gmail.com

for

 The for command Is used to execute a set of
commands a specified number of times.

for var in word; word, ... word,
do for 1 1n 1 2 3
command do
command _
echo %1
done

done

for (contd.)

 the shell permits filename substitution in the list
of words In the for

for file in memo[1-4] for file in * files=%(cat filelist)
do do
run $file run $file for file in $files
do
done done

run $file

done

for with arguments

for arg in $* for arg in "$@"
do do

echo $arg echo $arg
done done

for without lists

In absence of the keyword in, the shell automatically sequences
through all the arguments typed on the command line.

for arg
do
echo %arg

done

while command;
while
do
« command, is executed and its command
exit status tested. If it's zero, q
the commands enclosed comman
between the do and done are
executed.
while ["$1" -1le 5] done
do while ["$#" -ne 0 |
echo $i do
i=$((i + 1)) seho T8
shift
done
done

until

 The until command is similar to
the while, only it continues
execution as long as the
command that follows the until
returns a nonzero exit status.

until who | grep "“%$user " > /dev/null

do

sleep 60

done

until command;

do
command

command

done

echo "$user has logged on"

break and continue

for file

 To just exit from the loop, you can use the break
command. break can be followed by a number n,
which means that it will break two innermost
loops.

do

while "$count" -1t 10 : ..
L3 I« The continue command causes the remaining

do commands in the loop to be skipped. Execution of
the loop then continues as normal.

for file
if [-n "$error"]
do
then
if [! -e "$file"]
break 2
then
Ti

echo "$file not found!"

continue
done

done done

loop options

Executing a loop in the background
- done &

I/O redirection on a loop
- done > output
- done 2> errors

Piping data into and out of a loop
- done | command

Typing a loop on one Line

— Put a semicolon after the last item in the list and one after each command
in the loop e.qg.

- $foriin12 34; do echo $i; done

getopts

allows a program to take options in any order on the command
line.

Syntax:. getopts options variable

If getopts finds a matching option in the arguments, the letter is
stored inside the specified variable and returns a zero exit status.

It stores a question mark, if it doesn't find a matching option.
Example: -

- getopts air option

- $ foo -a -i -r or foo -air

The getopts command also handles the case where an option

must be followed by an argument. You write a colon character
after the option letter on the getopts command line e.qg.

- getopts mt: option

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

