

Unix Shell Programming

Shell Programming Basics

Roshan Chitrakar, PhD
roshanchi@gmail.com

What is a Shell?

● A shell is a program that acts as a user interface and script
interpreter, allowing you to enter commands and, indirectly, to
access the services of the kernel.

● First, a shell is a Command Processor: a program that reads and
interprets the commands that you enter.

● A shell also supports some type of programming language.
Using this language, you can write programs, call Shell Scripts, for
the shell to interpret. These scripts can contain regular Unix
commands, as well as special shell programming commands.

● Each type of shell has its own specific programming language
and rules. As a general rule, however, shells within the same
“family” use similar programming languages.

The Bourne Shell Family: sh, ksh, bash

● The very first shell named sh was written in 1971 by one of the
original creators of Unix, Ken Thompson.

● The original shell sh was replaced by a new shell (given the
same name; is backward compatible) written by a team of Bell
Lab programmers led by John Mashey in 1976.

● A brand new version of shell (also compatible with the original
sh shell) was designed by another Bell Lab programmer Steve
Bourne; was also named sh.

● Ironically, Mashey sh and Bourne sh were incompatible to each
other. Years later, the Bourne sh was chosen as the standard
shell and became default in the Unix Seventh Edition.

The Bourne Shell Family (contd.)

● In 1982, another Bell Lab scientist, David Korn,
created a replacement for the Bourne shell,
called the Korn Shell or ksh. The new Korn
shell offered a history file, command editing,
aliasing, and job control.

● With the next release of Unix, the Korn shell
was distributed to the world at large, and it soon
became a permanent replacement for the
Bourne shell.

The Bourne Shell Family (contd.)

● In the 1990s, a number of free, open source shells were
created, the most important of which were the FreeBSD
shell, Pdksh, the Zsh, and Bash. All of these shells
complied with the IEEE 1003.2 standard (one of POSIX
standards), making them adequate replacements for the
Korn shell.

● pdksh is a modern clone of the Korn shell. pdksh was
written to provide a Korn shell without restrictive licensing
terms; hence the name “public domain Korn shell”. The
best way to think of pdksh is as a modern Korn shell that
is free in both senses of the word (no cost + open source).

The Bourne Shell Family (contd.)

● Of all the members of the Bourne shell family, the most important is bash.
● bash was created by Brian Fox (1987) and later (starting in 1990)

maintained by Chet Ramey, all under the auspices of the Free Software
Foundation.

● Now, bash is supported by a community of programmers around the
world.

● bash extends the capabilities of the basic Bourne shell.
● bash is not only a command processor with a powerful scripting

language; it also supports command line editing, command history, a
directory stack, command completion, filename completion, and a lot
more.

● bash is free software, distributed by the Free Software Foundation. It is
the default shell for Linux, as well as Unix-based Macintoshes, and is
available for use with Microsoft Windows (running under a Unix-like
system called Cygwin).

The C-Shell Family: csh, tcsh

● In 1978, Bill Joy, a graduate student at U.C. Berkeley developed a brand
new shell, which he based on the Unix Sixth Edition sh program, the
predecessor of the Bourne shell.

● He added many important improvements, including aliases, command
history, and job control. In addition, he completely revamped the
programming facilities, changing the design of the scripting syntax so that
it resembled the C programming language. For this reason, he called
his new shell the C-Shell, and he changed the name of the program from
sh to csh.

● In the late 1970s, a programmer named Ken Greer from Carnegie-Mellon
University, began work on a completely free version of the csh, which he
called tcsh. it enhanced the C-Shell by offering a number of advanced
features, such as filename completion and command line editing.

Which Shell Should You Use?

● If you like to go with the flow, stick with the default and use whatever you
get on your system when you type sh. Most likely this will be bash with
Linux, the FreeBSD shell with FreeBSD, and the Korn shell with a
commercial Unix system.

● If you are adventurous, there are many shells for you to try. For example,
although the C-Shell is no longer a default shell, many people do enjoy using
it, and you may find that tcsh or csh is already available on your system. If
you want to go further afield, just search the Internet for Unix or Linux shells,
and you’ll find something new to try. (If you are adventurous and you can’t
make up your mind, try the Zsh.)

● For day-to-day work, you can use whichever shell takes your fancy, and
you can change whenever you like. However, if you write shell scripts, you
should stick with the standard Bourne shell programming language to
ensure that your scripts are portable enough to be used on other systems.

Which Shell Should You Use? (contd.)

● A complicated program has a lot of capability, but also demands
more time to master.

● Shells have a lot of features and options that you will never really need.
These extra facilities are often a distraction.

● One way to measure the complexity of a program is by looking at the
length of the documentation.

● FreeBSD shell, Bash, and the Zsh have most of the modern features
● Bash comes by

default in most of
the Linux distros.

● Zsh is complex and
adventurous.

Changing Your Shell

● If you use Linux, your login shell will probably be Bash.
● If you use a commercial Unix, your login shell will probably be the

Korn shell.
● If you use FreeBSD, it will probably be the Tcsh.
● To show you the name of the current shell:

echo $SHELL
● If you want to try the Tcsh, just enter:

tcsh
● you can also change the shell by using chsh command

chsh [-s shell] [userid]

Interactive and Non-interactive Shells

● The shell can act as both a user interface (interactive) and a
script interpreter (non-interactive).

● When you see the shell prompt, you enter a command. The
shell processes your command and then displays another
prompt. As you work in this way, the shell is your user
interface, and we say that you are using an Interactive Shell.

● Alternatively, you can create a set of commands, called a
Shell Script, which you save in a file. When you run your
script, the shell reads the commands from the file and
processes them one at a time without your input. When this
happens, we say that you are using a Non-Interactive Shell.

Environment Variables And Shell Variables

● Environment variables are available to all processes, they are global
variables.

● Shell Variables are used only within a particular shell, they are called
local variables.

● In C-Shell family,
– Global variables are given uppercase names and local variables are given

lowercase names. e,g, HARLEY is an environment variable and harley is a shell
variable..

● In Bourne shell family (Bash, Korn shell),
– both shell variables and environment variables are given uppercase names.

– every variable is either local only, or both local and global.

– Within the Bourne shell family, you are only allowed to create local variables.

– If you want a variable to also be an environment variable, you must use a special
command called export.

HARLEY=cool

export HARLEY

Displaying Variables: env, printenv, set

● To display environment variables, use the env command:

env
● On many systems, there is another command you can use as well:

printenv
● To get them sorted alphabetically

env | sort | less

printenv | sort | less
● To display all the shell variables along with their values, you use

the set command with no options or arguments:

set

Displaying/Using Shell Variables: echo

● The job of the echo command is to display the value
of anything you give it. For example, you enter:

echo I love Unix

echo $HOME $TERM $PATH $SHELL
● To display the value of TERM, you would enter:

echo ${TERM}
● or

echo $TERM

Using Variables in Bourne Shell family

HARLEY=cool

WEEDLY="a cool cat"

export HARLEY WEEDLY

PAGER=less; export PAGER

export PAGER=less

export PAGER=less EDITOR=vi PATH="/usr/local/bin:/usr/bin:/bin"

● If you need to delete variables, you use unset command

unset HARLEY WEEDLY

Using variables in C-Shell Family

● To set (create) and unset (delete) environment variables, you use
setenv and unsetenv.

● To set and unset shell variables, you use set and unset.

setenv PATH /usr/local/bin:/usr/bin:/bin

setenv HARLEY cool

setenv WEEDLY "a cool cat"

setenv LITTLENIPPER

unsetenv HARLEY

set term=vt100

set path=(/usr/bin /bin /usr/ucb)

set ignoreeof

unset ignoreeof

The Login Shell

● A terminal is connected to a Unix system through a direct wire, modem,
or network. For each physical terminal port on a system, a program
called getty will be active.

● The Unix system—more precisely a program called init—automatically
starts up a getty program on each terminal port whenever the system
is allowing users to log in.

● getty determines the baud rate, displays the message login: at its
assigned terminal.

● As soon as someone types in some characters followed by Enter, the
getty program disappears; but before it goes away, it starts up a
program called login to finish the process of logging in.

● After login checks the password you typed in against the one stored
in /etc/shadow, it then checks for the name of a program to execute.
In most cases, this will be /usr/bin/sh, /usr/bin/ksh, or /bin/bash.

The Shell's Responsibilities

● The shell analyzes each line you type in and
initiates execution of the selected program.

● The shell also has other responsibilities : -
– Program Execution

– Variable and Filename Substitution.

– I/O Redirection

– Pipeline Hookup

– Environment Control

– Interpret Programming Language

Regular Expressions

● Regular expressions are used by several different
Unix commands, including ed, sed, awk, grep, and,
to a more limited extent, vi. They provide a convenient
and consistent way of specifying patterns to be
matched.

● Filename substitution also involve certain regular
expression like ?, * and [...] etc.

● The regular expressions recognized by the
aforementioned programs are far more sophisticated
than those recognized by the shell.

Matching Any Character: The Period (.)

● A period in a regular expression matches any single character, no matter what it is. So,
the regular expression

r. specifies a pattern that matches an r followed by any single character.

.x. matches an x that is surrounded by any two characters.
● In the ed command

/ ... / searches forward in the file you are editing for the first line that contains any three
characters surrounded by blanks.

$ ed intro

248 implies no. of characters in the file intro

1,$p prints all the lines

/ ... / looks for three chars surrounded by blanks

/ repeats last search

1,$s/p.o/XXX/g changes all p.os to XXX

Matching the Beginning of the Line: The Caret (^)

● When the caret character ^ is used as the first character in a
regular expression, it matches the beginning of the line. So the
regular expression

^George matches the characters George only if they occur at
the beginning of the line.

$ ed intro

248

/^the/ finds the line that starts with the

1,$s/^/>>/ inserts >> at the beginning of each line

1,$s/^/ / inserts spaces at the beginning of each line

Matching the End of the Line: The Dollar Sign ($)

● The dollar sign $ is used to match the end of the line. So the regular expression

contents$ matches the characters contents only if they are the last characters on the
line.

.$ matches

\.$ matches any line that ends in a period

^\. matches any line that starts with one dot

$ ed intro

248

/\.$/ searches for a line that ends with a period

1,$s/$/>>/ adds >> to the end of each line

1,$s/..$// deletes the last two characters from each line

^$ matches any line that contains no characters

^ $ matches any line that consists of a single space character

Matching a Choice of Characters: The [...] Construct

$ ed intro

248

/[tT]he/ looks for the or The

1,$s/[aeiouAEIOU]//g deletes all vowels

/[0-9]/ finds a line containing a digit

/^[A-Z]/ finds a line that starts with an uppercase letter

1,$s/[A-Z]/*/g changes all uppercase letters to *s
● If a caret (^) appears as the first character after the left bracket, the

sense of the match is inverted.

1,$s/[^a-zA-Z]//g deletes all non-alphabetic characters

Matching Zero or More Characters: The Asterisk (*)

● The regular expression

X* matches zero, one, two, ... capital X's,

XX* matches one or more capital X's,

.* specifies zero or more occurrences of any characters

e.*e matches all the characters from the first e on a line to the last one

[A-Za-z][A-Za-z]* any alphabet followed by zero or any alphabet

[-0-9] {What does it match?}
● In ed,

1,$s/ */ /g changes multiple blanks to single blanks

1,$s/e.*e/+++/ replaces ??? with +++

1,$s/[A-Za-z][A-Za-z]*/X/g changes ??? to X

1,$s/[A-Za-z0-9][A-Za-z0-9]*/X/g ???

Search in files with grep

● To look for lines in cars containing four

$ grep four cars
● The first of grep 's arguments is a regular expression (RE) and the

second is a file name.
● grep displays more lines if the search pattern is found in more lines
● The search result is not restricted to whole words only; grep displays

partial-words too.
● If we supply more than one file name, grep looks in all of the files and

displays the file name before any lines containing the RE e.g.

$ grep needle *
● finds in all files in the present directory.

Metacharacters in grep

● RE usually consists of ordinary
characters and special characters;
the special characters are known
as metacharacters viz. $ ^ [. *

● Command examples: -

$ grep 'it$' cars

$ grep '^The' cars

$ grep 't^s$i' cars (not
metacharacters)

$ grep 'i.n' cars

$ grep 'a..e' cars

$ grep 't\.$' cars (escaped
metacharacters)

$ grep ' [Ii]n ' cars

$ grep '[qxj]' cars

$ grep '[J-S]' cars

$ grep '[^A-Za-z0-9 .,:]' cars
(negation)

$ grep '00*' cars

$ grep 'z' cars

$ grep 'z*' cars

$ grep 'stands.*the' cars

$ grep '^$' cars

$ grep '[A-Z][a-z][a-z]*' cars

grep options and more...

● The -v options makes grep display lines which do not match the
RE.

$ grep -v 'e' cars
● The -c option makes grep count the matching lines.

$ grep -c '^$' cars
● you can use both options at once.

$ grep -cv 'e' cars
● grep can be used along with other commands: -

$ who | grep roshanchi

$ ls -l | grep '^d' | wc -l

Line editor: ed

● A line editor is a program that allows us to change a file one line
at a time.

● Starting ed : $ ed cars
– By typing a line number ed displays the line e.g. 1 prints the first line

● Substitute command : s/demote/waste/
● Errors : ed has only one error message i.e. a question mark (?)
● Substitute suffix p : sXmaleXmanXp (X is a delimeter)

– ed does not display the new version of the line. We can make that
happen by adding a p to the end of the command.

● Substitute suffix g : s/an/AN/gp
– g means global. The basic form of the substitute command only makes

one change to the line. If we want to change every occurrence in the
current line, we have to add a g suffix.

ed (contd.)

● Regular expressions

s/AN.*AN/an man wastes more than/p

s/^/Fact: /p

s/$/t/p
● Splitting a line

s/n m/n\

m/p

-

u

p
● The backslash (\) immediately before the end of the line tells ed that the new-

line is part of the replacement string.
● The - command goes to the line above the current line, and the use u command

undoes the effect of the previous change.

ed (contd.)

● Missing replacement string
– If no replacement string is supplied, the characters matching the RE will be removed.

s/......//p

s/.$//p
● & in the replacement string

– The ampersand means: whatever the RE matched in the most recent match

s/man/(&)/p
● Accessing parts of a string

– We can enclose parts of a complex regular expression in escaped parentheses (\() and
(\)). Doing so, lets us split the complex regular expression into smaller parts and refer to
the smaller parts individually.

s/\(.*American\).*\(wastes.*\)/\1 person \2/p
– Here, The first part was up to and including "American"

– The last was from "wastes" to the end of the line

– The middle part was all the characters between the first and last parts

ed (contd.)

● Searching

/spends/ (searches for the text spends)
● The search starts at the current line; it continues towards the last line of the file.
● It is possible to search from the current line towards line one e.g.

?petrol?
● These ways of referring to lines (/spends/ ?petrol?) are known as context

addresses; they can be used as if they were line numbers.
● Missing RE

– If we do not give ed anything where it is expecting an RE, it will re-use the last RE we
gave

/[A-Z][a-z][a-z]*/

//
– The same thing applies to the substitute command too

s//A/p

ed (contd.)

● Line numbers
– If we put a line number in front of an ed command it will affect only the appropriate line of

the file. We can also specify a range of lines by giving two line numbers separated by a
comma.

11p

2,6p

2,6d

2s/car/automobile/p

1,12s/ it / his car /gp
● More on Line ranges: -

1,$ means all lines

,$ means from the current line to the end of the file

1, means from line one to the current line

.-2,.+2 means the five lines centred on the current line

/parks/,/four/ means from the line containing parks to the line containing four

ed (contd.)

● Global command – g
– format: g/RE/commands

g/car/p

g/automobile/s//car/g
– The first g means:- all lines containing the RE; the second means:- make all

possible changes on each line.

g/his car/s//it/gp

g/ it /d
● The inverse of g – v

– The v command is the inverse of g in that the commands are performed on lines
that do not match the RE.

v/ it /d

Reference file 1: intro

The Unix operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s.

One of the primary goals in

the design of the Unix system was to create an

environment that promoted efficient program

development.

Reference file 2 : cars

The typical American male devotes more than 1,600 hours a

year to his car. He sits in it while it goes and while it

stands idling. He parks it and searches for it. He earns the

money to put down on it and to meet the monthly instalments.

He works to pay for petrol, tolls, insurance, taxes and

tickets. He spends four of his sixteen waking hours on the

road or gathering resources for it. The model American puts

in 1,600 hours to get 7,500 miles: less than five miles per

hour. In countries deprived of a transportation industry,

people manage to do the same, walking wherever they want to

go, and they allocate only three to eight percent of their

society's time budget to traffic instead of 28 per cent.

Ivan Illich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

