

Unix Shell Programming

Chapter 5: Reading, Formatting and Printing

Roshan Chitrakar, PhD
roshanchi@gmail.com

read

● syntax: read variables
● reads a line from standard input and assigns the first

word to the first variable, the second word to the
second variable and so on.

● the excess words get assigned to the last variable.

read x y

read text
● read always returns an exit status of zero unless an end

of file (or Ctrl + d) condition is detected on the input.

Special echo Escape Characters

● echo command always automatically displays a terminating newline character
● This can be suppressed if the last two characters given to echo are the special

escape characters \c e.g.

echo "$to already exists; overwrite (yes/no)? \c"
● Some other escape characters: -
● \b Backspace
● \c The line without a terminating newline
● \f Formfeed
● \n Newline
● \r Carriage return
● \t Tab character
● \\ Backslash character
● \0nnn The character whose ASCII value is nnn, where nnn is a one- to three-

digit octal number

printf

● prints formatted output
● syntax : printf "format" arg1

arg2 …

$ printf "This is a number:
%d\n" 10

This is a number: 10
● printf doesn't add a newline

character to its output like
echo; however, printf
understands the same escape
characters that echo does

● Some formats: -
● d Integers
● u Unsigned integers
● o Octal integers
● x Hexadecimal integers, using a-f
● X Hexadecimal integers, using A-F
● c Single characters
● s Literal strings
● b Strings containing backslash

escape characters
● % Percent signs

printf examples

● $ printf "The octal value for %d is %o\n" 20 20
– The octal value for 20 is 24

● $ printf "The hexadecimal value for %d is %x\n" 30 30
– The hexadecimal value for 30 is 1e

● $ printf "The unsigned value for %d is %u\n" –1000 –1000
– The unsigned value for -1000 is 4294966296

● $ printf "This string contains a backslash escape: %s\n" "test\nstring"
– This string contains a backslash escape: test\nstring

● $ printf "This string contains an interpreted escape: %b\n" "test\nstring"
– This string contains an interpreted escape: test string

● $ printf "A string: %s and a character: %c\n" hello A
– A string: hello and a character: A

● $ printf "Just the first character: %c\n" abc
– a

printf examples (contd.)

● The general format of a conversion specification is

%[flags][width][.precision]type
● $ printf "%+d\n%+d\n%+d\n" 10 –10 20
● +10
● –10
● +20
● $ printf "% d\n% d\n% d\n" 10 –10 20
● 10
● -10
● 20
● $ printf "%#o %#x\n" 100 200
● 0144 0xc8

● - Left justify value.
● + Precede integer with + or -.
● (space) Precede positive integer

with space character.
● # Precede octal integer with 0,

hexadecimal integer with 0x or 0X.
● width Minimum width of field; *

means use next argument as width.
● precision Minimum number of digits

to display for integers; maximum
number of characters to display

● for strings; * means use next
argument as precision.

printf examples (contd.)

● $ printf "%20s%20s\n" string1 string2
● string1 string2
● $ printf "%-20s%-20s\n" string1 string2
● string1 string2
● $ printf "%5d%5d%5d\n" 1 10 100
● 1 10 100
● $ printf "%5d%5d%5d\n" -1 -10 -100
● -1 -10 -100
● $ printf "%-5d%-5d%-5d\n" 1 10 100
● 1 10 100

more printf examples

● The .precision modifier is a positive number that specifies a minimum number
of digits to be displayed for %d, %u, %o, %x, and %X. This results in zero
padding on the left of the value:

● $ printf "%.5d %.4X\n" 10 27
– 00010 001B

● $ printf "%.5s\n" abcdefg
– abcde

● A width can be combined with .precision to specify both a field width and zero
padding (for numbers) or truncation (for strings):

● $ printf ":%#10.5x:%5.4x:%5.4d\n" 1 10 100
● : 0x00001: 000a: 0100
● $ printf ":%9.5s:\n" abcdefg
● : abcde:
● $ printf ":%-9.5s:\n" abcdefg
● :abcde :

more printf examples (contd.)

● if an * is used in place of a number for width or precision, the
argument preceding the value to be printed must be a number
and will be used as the width or precision, respectively.

● If an * is used in place of both, two integer arguments must
precede the value being printed and are used for the width
and precision:

● $ printf "%*s%*.*s\n" 12 "test one" 10 2 "test two"
● test one te
● $ printf "%12s%10.2s\n" "test one" "test two"
● test one te

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

