

Unix Shell Programming

Shell Programing Basics
+

Writing Shell Programs

Roshan Chitrakar, PhD
roshanchi@gmail.com

Stream editor - sed

● It is more efficient than ed for non-interactive edits and can handle larger
files.

● The ed commands are done only on the current line, unless we specify
otherwise. The sed commands are done on every line, unless we specify
otherwise.

ed followed by s/He/She/

$ sed 's/He/She/' cars
● The quotation marks around the editing command were not necessary, but it is

good idea to wrap REs in quotation marks so that the shell does not interpret
the metacharacters and spaces.

● cars is just an input file. Its contents are not altered. The edited text is only
sent to the standard output, not put back into the file.

$ sed 's/He/She/' cars > newcars redirects the output into a file.

Multiple commands

● each editing command is preceded by the -e option

$ sed -e 's/car/auto/' -e 's/petrol/gas/' cars > newcars
● We could split a long command over several lines

$ sed -e 's/car/auto/' \

> -e 's/petrol/gas/' \

> -e 's/tickets/fines/' cars > newcars
● Or, we could use only one set of quotation marks :-

$ sed

> 's/car/auto/

> s/petrol/gas/

> s/tickets/fines/' cars > newcars

$ sed '/Man/d

> /car/s//auto/

> /petrol/s//gas/

> /tickets/s//fines/' cars > newcars

Quiet operation - -n

● The -n option and sed 's p command allow us to display only
certain lines of a file.

$ sed -n '4p' cars displays line 4 only.
● And this example makes sed do the same as grep :

$ sed -n '/model/p' cars

Standard Input

● sed operating on its standard input:

$ date | sed 's/:/ /g' | wc -w

8

cut

● Cuts out various fields of data from a data file or the output of a command
● Syntax : cut -cchars file

– where chars specifies what characters you want to extract from each line of file. e.g.
-c5 ; -c1,13,50 ; -c20-50 or -c5-

● If file is not specified, cut reads its input from standard input, meaning that you
can use cut as a filter in a pipeline.

● Examples : -

$ who | cut -c1-8

$ who | cut -c10-16 | sort

The -d and -f Options
● Syntax : cut -ddchar –ffields file

– where d means delimeter (tab is the default) and f stands for field

● Examples: -

$ cut -d: -f1 /etc/passwd

$ cut -d: -f1,6 /etc/passwd

paste

● A kind of the inverse of cut - instead of breaking lines apart, it puts them together.
● Syntax: paste files e.g. paste names addresses
● More than two files can be joined. Files are joined line by line separated by a tab.

The -d Option
● you can specify the -d option with the format -dchars to separate fields by any

character other than tab.

$ paste -d'+' names addresses numbers

The -s Option
● pastes together lines from the same file, not from alternate files.

$ paste -s names

$ ls | paste -d' ' -s

tr

● Translates characters from standard input.
● Syntax: tr from-chars to-chars
● $ tr e x < intro
● $ cut -d: -f1,6 /etc/passwd | tr : '\11'

– here 11 is the octal value of tab character.

● $ tr '[a-z]' '[A-Z]' < intro

The -s Option
● "squeeze" out multiple occurrences of characters in to-chars
● $ tr -s ':' '\11'
● $ tr –s ' ' ' ' < lotsaspaces # each pair of quotes enclose a space

The –d Option
● Deletes single characters from a stream of input
● Syntax : tr -d from-chars
● $ tr -d ' ' < intro

sort
● takes each line of the specified input file and sorts it into ascending order.

$ sort names
● The -u Option : eliminates duplicate lines from the output.

$ sort -u names
● The -r Option : Use the -r option to reverse the order of the sort:

$ sort -r names
● The -o Option : specify the output file

$ sort names > names # wipes out the input file

$ sort names -o names
● The -n Option : specifies that the first field on the line is to be considered a number, and the data is to

be sorted arithmetically

$ sort -n data

Skipping Fields
● You could tell sort to skip past the first number on the line by using the option +1n instead of -n. The

+1 says to skip the first field.
● The -t Option : sort assumes that the fields being skipped are delimited by space or tab characters.

The -t option says otherwise.
● $ sort +2n -t: /etc/passwd

uniq

● Syntax: uniq in_file out_file
● Copies in_file to out_file, removing any duplicate

lines

$ uniq names

$ sort names | uniq
● The -d Option : finds the duplicate entries in a file

$ sort names | uniq -d

$ sort /etc/passwd | cut -f1 -d: | uniq -d

Built-in Integer Arithmetic

● The POSIX standard Unix Shell provides a mechanism for performing integer
arithmetic on shell variables called arithmetic expansion

$((expression))
– expression may contain shell variables and operators. Valid shell variables are those that

contain numeric values and valid operators are taken from the C programming language.

● Examples: -

echo $((i+1))

$ echo $((a = a + 1))

echo $((i = (i + 10) * j))

i=$((i * 5))

result=$((i >= 0 && i <= 100))

$ i=$((100 * 200 / 10))

$ j=$((i < 1000)) # If i is < 1000, set j = 0; otherwise 1

$ echo $i $j

Quotes and Command Substitution

{Refer to the practical exercises

and

Stephen G. Kochan, Unix Shell Programming,
p165-187}

Arguments

● Whenever you execute a shell program, the shell
automatically stores the first argument in the special
shell variable 1, the second argument in the variable 2
($1, $2), and so on.

● These special variables are called positional
parameters.

● The special shell variable $# gets set to the number of
arguments that were typed on the command line.

● The special variable $* references all the arguments
passed to the program.

Arguments - ${n}

● Used to access more than 9 (nine) arguments.
● You cannot access the tenth and greater

arguments with $10, $11, and so on. If you try
to do so, the shell actually substitutes the value
of $1 followed by a 0.

● Instead, the format ${n} must be used. So to
directly access argument 10, you must write
${10}.

shift

● Allows you to effectively left shift your positional
parameters.

● shift 3 has the same effect as performing three
separate shifts.

{ Refer to the practical lessons for more
understanding.}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

